What Have We Learned in Seven Conferences on Unburned Carbon on Utility Fly Ash

A Review of Past Conferences

Thomas C. Ruppel Parsons Corporation

2002 Conference on Unburned Carbon on Utility Fly Ash

May 14, 2002

Categories from Technical Presentations

Frequency of Topical Presentations

What Have We Learned?

- * Control Measures for UBC
- * Instrumentation to Measure Unburned

- * Beneficiation of High-LOI Fly Ash
- * New Uses for High-LOI Fly Ash
- * Characterization of High-LOI Fly Ash

Control Measures for UBC Presented at the Conferences

- * Balancing coal distribution among
- * Combustion optimization software
- * Improving the three T's (time,
- * Increasing the fineness (decreasing

Control Measures for UBC Presented at the Conferences

Continued

- * Increasing the thickness of the furnace slag layer
- ***** Low-NOx-burners
- * Natural gas cofiring
- ***** Overfire air
- * Slagging combustors

Control Measures for UBC Presented at the Conferences continued

- * Optimizing Engineering Parameters:
 - a. ash loading
 - b. boiler unit load
 - c. excess air
 - d. firing system design
 - e. furnace internal fuel-air swirl
 - f. heating value of coal
 - g. moisture
 - h. mill bias, maintenance, tilt angle, and air flow
 - i. residence time

% UBC

UBC levels
pre- & post- combustion modifications

% UBC (cont'd)

UBC levels
pre- & post- combustion modifications

Instrumentation to Measure Unburned Carbon on Fly Ash On-Line – In-Situ

- * Dielectric strength of particle (Sekam, Clyde
- * Infrared absorption by particles
- * Microwave absorption by particles
- * Optical sensors (MK Eng., MA)
- *** Spectrophotometer** (Concarb 2000, PA)

Instrumentation to Measure Unburned Carbon on Fly Ash On-Line – Extractive

* Infrared reflectance by particles

(RCA, M&W Asketeknik, Denmark)

***** Microwave absorption by particles

(CAMRAC, PA) 10

Instrumentation to Measure Unburned Carbon on Fly Ash Off-Line

Based on:

- * Color of fly ash (Shamrock Env., FL)
- *** Gravimetric** (HOT FOIL LOI, FERC, CA)
- * Subsonic signal from a carbon-in-ash sample irradiated with visible light

(IA State Univ.)

Beneficiation of High-LOI Fly Ash

- * Acoustically agitated bubbling fluidized bed (Lehigh Univ., PA)
- **★ Electrostatic separation** (STI, MA)
- **★ Froth flotation** (MTU)

Beneficiation of High-LOI Fly Ash Continued

***** Pneumatic transport separator

(Tribo Flow Sepns. & UKY)

* Triboelectric (triboelectrostatic)

(9 presentations)

* Vibrating electrostatic separator

(Minerals & Coal Tech., VA, Korean coals)

High-LOI Fly Ash Carbon Reduction by Burn-Off

- * Carbon burnout via a close-coupled burnout reactor (Prog. Matls., FL and SC Elec. & Gas)
- * Microwave heating to decarbonize <u>low-</u>
 <u>LOI</u> fly ash (Microwave Tech. Corp., Canada)
- * Recycling beneficiated high-LOI fly ash back into furnace (New England Power, STI process, then recycle C-rich stream)

New Uses for High-LOI Fly Ash

- * Activated carbon source (Penn State Univ.)
- * Autoclaved aerated concrete (as a sawable nonrotting wood replacement)

* Cement kiln fuel (Morrison Technology, ME)

New Uses for High-LOI Fly Ash Continued

- * Concrete manufacture (9 presentations)

 Construction materials (e.g., concrete blocks, ash bricks, panels) (Univ. of Denver)
- * Flowable fill (low load strength backfill) (Hands On Tech!, MA) 16

New Uses for High-LOI Fly Ash Continued

- **★ Industrial binder for metal casting and**(MTU)
- * Improved structural fill (subgrade/

Robert Kimball Assoc., PA)

* Phosphoric acid-based cements and

(Answer Tech., IL)

New Uses for High-LOI Fly Ash Continued

- * Reinjection of fly ash into power plant slip-stream (mercury removal) (ADA Tech., CO)
- * Silicaceous material source for vitrification to glass and ceramics (Vortec Corp., PA)
- * Soil amendments ("crops grow well"), food crops contain low levels of ash metals (scs, AL)

What Have We Learned?

* Characteristics of UBC:

Initial BET surface area: activated to ca.

What Have We Learned? Continued

* Characteristics of UBC, continued:

- d) Porosity: 20-500 A (mesopore range)
- e) Bulk densities: 1.5 to 1.95 g/cc
- f) Appears to have the structure of highly disordered graphite

What Have We Learned? Continued

* Process improvements undertaken to reduce NOx emissions and improve boiler operation can reduce UBC levels by approximately half.

What Have We Learned? Continued

- * Based on a number of conference presentations, we now have information on about a dozen techniques for each of the following:
 - a) Measuring UBC on fly ash
 - b) Separating (beneficiating) UBC from fly ash
 - c) New uses for high-LOI fly ash.

What Have We Learned? Continued

* Conference confirmed that control of UBC on flyash by combustion modification must be replaced by or coupled with SCR and/or SNCR to meet NOx emission requirements

What Hasn't the Conference Heard Yet? Effects on Unburned Carbon

- ***** Burners out of service
- * Combination of combustion/postcombustion technologies
- * Flue gas recirculation
- * Reduced air preheat
- * Steam or water injection
- * Ultra-low excess air
- * Clear Skies Initiative

Unburned Carbon Conference Team Members

- * Tom Sarkus, NETL, Conference Chair
- * Leo Makovsky, NETL, Team Leader
- * Karen Lockhart, Science Applications International Corporation (SAIC), Certified Conference Planner
- * Al Mann Parsons Corporation
- * Tom Ruppel Parsons Corporation 25